
Automated Theorem Proving in
Intuitionistic Propositional Logic

Gabriel Wu, Montgomery Blair High School

Under the guidance of William Gasarch, University of Maryland Department of Computer
Science

November 2020

Abstract. Automated theorem proving uses algorithms to search for mathe-
matical proofs. This paper describes three original theorem provers that operate
in a branch of logic that lacks the law of excluded middle (P ∨ ¬P), called in-
tuitionistic propositional logic. One prover employs a randomized depth-first
search (DFS) to construct a proof tree, another uses DFS with memoization,
and the third uses a DFS in LJT sequent calculus. After timing the provers on
test cases from the Intuitionistic Logic Theorem Proving Library, it was found
that the LJT prover was the most efficient on all tests and the randomized DFS
prover was the slowest. While these provers are all significantly slower than
most modern techniques, the simplicity of the algorithms allows those without
extensive backgrounds in logic to explore automated theorem proving.

Keywords: automated theorem proving, intuitionism, sequent calculus

1 Introduction 1

2 Preliminaries 1
2.1 Propositional Logic . 1
2.2 Intuitionistic Logic . 1
2.3 Sequent Calculus . 2

3 Methods 3
3.1 Implementation . 3
3.2 Prover Framework . 4
3.3 Randomized Depth-First Search . 4
3.4 DFS with Memoization . 5
3.5 LJT Sequent Calculus . 6
3.6 The Intuitionistic Logic Theorem Proving Library 7

4 Results 7
4.1 Data . 7
4.2 Additional Experiments . 9

5 Discussion 9

6 Code 10

1 Introduction

Logic is the systematic study of inference and deduction. It is considered a sub-field of
both math and philosophy. We can establish the truth of a mathematical statement by con-
structing a proof that follows the structure of a proof system. For large propositions, finding
such a proof may be difficult – in fact, intuitionistic propositional logic has been shown to be
PSPACE-complete (therefore it is thought to be hard to solve) [9]. Thus, mathematicians
use automated theorem provers to leverage computational power for complex proof searches.
This paper describes three intuitionistic provers that take any propositional formula F as
input, then attempt to either prove F or determine that F is not a theorem.

2 Preliminaries

2.1 Propositional Logic

In propositional logic, variables can be assigned the value of True or False and are usually
represented by a lowercase letter. Variables can be combined using logical connectives to
form propositional formula. Formally, a propositional formula A must be of the form p, >,
⊥, B∧C, B∨C, B → C, or ¬B, where p is a variable and B and C are other propositional
formulas. In English, these represent a variable, True, False, B and C, B or C, B implies
C, and not B, respectively. These connectives can be used to express other operators such
as↔ and ⊕. In this paper, I will use the uppercase letters for formulas and lowercase letters
for variables.

The value of a propositional formula can be either True or False, defined recursively based
on the values of its immediate sub-formulas:

B C B ∧ C B ∨ C B → C ¬B
T T T T T F

T F F T F F

F T F T T T

F F F F T T

A formula is considered a tautology if it is True no matter how one assigns values to its
variables. This corresponds to a column full of T ’s in a truth-table. Some examples of
tautologies are p ∨ ¬p, (p→ q)→ (q ∨ ¬p), and (p ∧ q)→ (p ∨ q).

2.2 Intuitionistic Logic

Intuitionistic logic encompasses the study of logical reasoning when only constructive
inferences are allowed. In intuitionism, the only valid mathematical arguments are those
where an object of interest can be constructed from a proof.

For example, consider the following non-constructive proof that there exist two irrational
numbers a and b such that ab is rational [1]. Let a = b =

√
2. If

√
2
√
2 is rational, we

1

are done. Otherwise, let a =
√

2
√
2 (which we are now assuming to be irrational) and

b =
√

2. Then, ab =
√

2
√
2·
√
2

=
√

2
2

= 2 ∈ Q. While the use of disjoint cases seen here is
perfectly reasonable in our classical mode of reasoning, this would not be a valid proof in
constructive logic. The fact that we do not know if

√
2
√
2 is rational means that we cannot

provide definite values for a and b.

On a propositional level, intuitionistic logic can be described as classical logic without
the law of the excluded middle (P ∨ ¬P) or double negation elimination (¬¬P → P) [7].
Logical connectives in intuitionistic logic have constructive interpretations which differ from
classical logic. To prove P ∨Q, we must either have a proof of P or a proof of Q. A proof
of P → Q is an algorithm which can convert a proof of P into a proof of Q. ¬P can be
interpreted as P → ⊥, meaning we can derive a contradiction from P .

As a result, many tautologies in classical propositional logic are not valid theorems in
intuitionistic logic. Some examples include ¬(p∧ q)→ (¬p∨¬q) and (p∧ (¬q → ¬p))→ q.
However, since intuitionistic deduction is strictly weaker than classical deduction, any intu-
itionistic theorem must also be a classical theorem. In other words, intuitionistic theorems
make up a subset of classical tautologies.

2.3 Sequent Calculus

Gentzen-style sequent calculus is one of the many proof systems used to establish the
truth of propositional statements. In the sequent calculus used for intuitionistic proofs,
called the LJ system, sequent statements take the form:

A1, A2, . . . , An ` B

The formulas {Ai} to the left of the turnstile are called the antecedents, while the formula
B to the right of the turnstile is called the consequent [5]. Semantically, the sequent is
equivalent to (A1 ∧ A2 ∧ · · · ∧ An) → B. Thus, proving the formula P from no premises
is equivalent to deriving the sequent “ ` P ”. Although there are formal structural rules
dealing with commuting {Ai}, in this paper the antecedents will be treated as unordered.

A proof in sequent calculus consists of a tree of sequents, where each sequent follows
logically from zero (if it is an axiom) or more “child sequents”, according to the rules of
inference. The inference rules for the LJ system are as follows [5]:

Init
A,Γ ` A

⊥-Left
⊥,Γ ` G

A,B,Γ ` G
∧-Left

A ∧B,Γ ` G

Γ ` A Γ ` B ∧-Right
Γ ` A ∧B

A,Γ ` G B,Γ ` G
∨-Left

A ∨B,Γ ` G

Γ ` A ∨-Right1
Γ ` A ∨B

Γ ` B ∨-Right2
Γ ` A ∨B

A→ B,Γ ` A B,Γ ` G
→-Left

A→ B,Γ ` G

A,Γ ` B
→-Right

Γ ` A→ B

In these rules, A, B, and G represent arbitrary formulas. Γ represents a set of additional
antecedent formulas (possibly empty). Fig. 1 gives an example proof tree which establishes
the commutativity of ∨ using these inference rules.

2

Init
P ` P ∨-R2

P ` Q ∨ P

Init
Q ` Q

∨-R1
Q ` Q ∨ P

∨-L
P ∨Q ` Q ∨ P

→-R
` (P ∨Q)→ (Q ∨ P)

Figure 1: An LJ proof of (P ∨Q)→ (Q ∨ P)

A modification of the LJ system, called LJT, replaces the→-Left inference with four new
inference rules. LJT is logically equivalent to LJ, with the benefit that all inference rules
sprout child sequents that are smaller than the parent sequent. This ensures that any proof
search must eventually terminate. The four new inference rules that replace →-Left are [3]:

B, a,Γ ` G
→-Left1 (a is atomic)

a→ B, a,Γ ` G

C → (D → B),Γ ` G
→-Left2

(C ∧D)→ B,Γ ` G

C → B,D → B,Γ ` G
→-Left3

(C ∨D)→ B,Γ ` G

D → B,Γ ` C → D B,Γ ` G
→-Left4

(C → D)→ B,Γ ` G

3 Methods

3.1 Implementation

The automated theorem provers are coded in Python 3. Propositional formulas are rep-
resented recursively in a Sentence class. Each Sentence object is either a propositional
variable, or it stores up to two children Sentence objects along with a logical connective.
Storing a formula this way creates an expression tree which ensures there is a single connec-
tive on the highest level. This makes it easy to determine applicable inference rules during
the proving phase. Fig. 2 shows the expression tree of an example formula, where each node
represents a Sentence object.

→

∧

p ∧

→

q ¬

q

→

¬

q

r

r

Figure 2: The expression tree of (p ∧ (p→ ¬q) ∧ (¬q → r))→ r

Each Sequent stores a list of Sentence objects in the antecedent, as well as a single
Sentence succedent as described in the LJ intuitionistic sequent calculus system. When

3

comparing two Sequent classes for equality, I use the hashing function:

H(seq) :=

(∑
x∈ant

h1(x)

)
+ h2(suc)

where ant is a list of antecedent formulas, suc is the succedent formula, and h1 and h2 are
two built-in string hash functions. For the purposes of hashing, the propositional formulas
x and suc were represented as strings. This particular hashing function was chosen because
it remains invariant to permutations of the antecedent formulas, which is important because
the antecedents are unordered.

3.2 Prover Framework

When a propositional formula F is submitted to the prover, it does two things before
calling the principle prove method. First, it calls a Boolean satisfiability solver, commonly
known as a SAT solver, on ¬F . The SAT solver checks if there is any setting of variables that
makes ¬F true. If so, then F itself cannot be a tautology, meaning it cannot be proven in a
classical logic system. Since intuitionistically valid theorems must be classical tautologies,
the method automatically returns False. I coded my own SAT solver which converts the
formula into conjunctive normal form, then uses backtracking and watchlists to efficiently
check for satisfiability. While it could be sped up using more advanced SAT methods, the
formulas I used on my prover were short enough for this simple solver.

Once F is found to be a tautology, it is converted into a modified formula F ′ where all
occurrences of ¬A were replaced with A → ⊥, as specified in the intuitionistic sequent
calculus. Formally, F ′ = conv(F) where

conv(F) :=


conv(A)→ ⊥ if F = ¬A
conv(A) op conv(B) if F = A op B, for op ∈ {∧,∨,→}
p if F = p

Finally, F ′ is sent to one of three principal intuitionistic prover methods, detailed below.

3.3 Randomized Depth-First Search

The first prover method uses a depth-first search with randomized inference rules to
construct the proof tree. When called to prove a goal sequent S, the method first determines
the valid inference rules that could be applied to derive S. It cycles through these valid
inference rules in a random order, recursively calling itself on the resultant child sequents.
If none of the inference rules produce children that were able to be proved, the method
returns false – the prover was unsuccessful at proving S. However, if the method is able to
prove all of the children of a certain inference rule, it returns true because it has generated
a valid proof tree for S. To prevent infinite recursion, there is a max_depth variable that
caps the height of the proof tree, typically set to 1000.

Algorithm 1 gives pseudocode for this randomized DFS process.

4

Define random_dfs(S, curr_depth)
/* Input: Sequent S to be proved, current depth in proof tree */
/* Output: Whether or not S was successfully proved */
if curr_depth > max_depth

return False
valid_rules = {}
for inference in INFERENCE_RULES

if inference could lead to S
Add inference to valid_rules

Randomly shuffle valid_rules

for inference in valid_rules
Let C be the list of sequent premises required for inference to derive S
Add C as children to S in the proof tree
success = True
for child in C

if not random_dfs(child, curr_depth+1)
success = False
break

if success
return True

else
Remove all children of S in the proof tree

return False

Algorithm 1: Randomized DFS prover method

3.4 DFS with Memoization

Sometimes equivalent sequents can appear in multiple places in a single proof tree. One
weakness of the randomized DFS prover described in section 3.3 is that it does not remember
what it has already seen, so it may end up in an infinite recurrence trying to prove the same
sequent multiple times. This decreases its efficiency. To eliminate redundant computation,
we can store a global record of previous calls to the prover method. This technique, known
as memoization, allows the prover to reference previous parts of the proof tree when it
encounters a duplicate sequent. It also lets the prover give up early when it encounters a
sequent it has already unsuccessfully tried to prove, which saves computational time.

I implemented memoization with a hash table, also called a “dictionary” in Python. Using
the hashing function described in Section 3.2, the table stores {sequent: depth} pairs. Each
entry represents a previous dfs_memoization call on sequent at a certain depth. Each
entry can also be marked as complete to indicate that it has been successfully proven. The
pseudocode for this method is given in Algorithm 2. Notice that in marked line 1, the prover
only abandons its search if a previous call to S was unsuccessful and was started at a smaller
depth. This is important because, with more room to grow until reaching max_depth, the
current call may find a proof which the previous call did not have the space to explore. In
marked line 2, the current call is labeled complete before exiting so that future calls can
reference the same proof subtree.

5

Define dfs_memoization(S, curr_depth)
/* Input: Sequent S to be proved, current depth in proof tree */
/* Output: Whether or not S was successfully proved */
if curr_depth > max_depth

return False
if S in all_calls /* Previous attempt to prove S */

Let P be the previous call of S in all_calls
if P is marked complete /* P has already been proven */

Set the children of S to point to P
return True

else /* Failed to prove P previously */
1 if depth of P ≤ curr_depth

return False
Add {S, curr_depth} to all_calls

valid_rules = {}
for inference in INFERENCE_RULES

if inference could lead to S
Add inference to valid_rules

Randomly shuffle valid_rules

for inference in valid_rules
Let C be the list of sequent premises required for inference to derive S
Add C as children to S in the proof tree
success = True
for child in C

if not dfs_memoization(child, curr_depth+1)
success = False
break

if success
2 Mark S as complete in all_calls

return True
else

Remove all children of S in the proof tree
return False

Algorithm 2: DFS with memoization prover method

3.5 LJT Sequent Calculus

While the first two provers employ LJ sequent calculus, the third prover method searches
for proofs in the LJT sequent calculus. As discussed in Section 2.3, the LJT calculus
is logically equivalent to the LJ calculus. However, LJT is useful for automated theorem
proving because all children sequents are guaranteed to be smaller than their parent sequent.
This means that the LJT proof of any propositional sentence is bounded in depth, often
leading to more concise proof trees. The dfs_LJT method was implemented the same way
as the dfs_memoization method, except the→-Left LJ inference rule was replaced with its
LJT counterparts.

6

Table 1: ILTP problems used to test random_dfs, dfs_memoization, and dfs_LJT

Problem Intuit. status Description

SYJ201 Theorem [((p1 ↔ p2)→ p1)∧((p2 ↔ p3)→ (p1∧p2))∧· · ·∧((p2N+1 ↔
p1)→ (p1 ∧ p2 ∧ · · · ∧ p2N+1))]→ (p1 ∧ p2 ∧ · · · ∧ p2N+1)

SYJ202 Theorem Pigeonhole principle with N holes and N + 1 pigeons

SYJ203 Theorem Double negation of a De Morgan’s-style statement: ¬¬[(p1∧
p2 ∧ · · · ∧ pn) ∨ (¬p1 ∨ ¬p2 ∨ · · · ∨ ¬pn)]

SYJ204 Theorem [pn ∧ (p1 → (p1 → p0)) ∧ (p2 → (p2 → p1)) ∧ · · · ∧ (pn →
(pn → pn−1))]→ p0

SYJ205 Theorem Complex statement involving the conjunction of many im-
plications.

SYJ206 Theorem Reverse of a ↔ permutation: (. . . (((p1 ↔ p2) ↔ p3) ↔
p4) · · · ↔ pn)↔ (. . . ((pn ↔ pn−1)↔ pn−2) · · · ↔ p1)

SYJ207 Non-theorem
[((p1 ↔ p2) → (p1 ∧ p2 ∧ · · · ∧ p2n)) ∧ ((p2 ↔ p3) → (p1 ∧
p2∧· · ·∧p2n))∧· · ·∧ ((p2n ↔ p1)→ (p1∧p2∧· · ·∧p2n))]→
[p0 ∨ (p1 ∧ p2 ∧ · · · ∧ p2n) ∨ ¬p0]

SYJ208 Non-theorem Pigeonhole principle with a double negation
SYJ209 Non-theorem SYJ203 with ¬¬¬p1 instead of ¬p1
SYJ210 Non-theorem SYJ204 with ¬¬pn instead of pn
SYJ211 Non-theorem SYJ205 slightly modified and with double negations
SYJ212 Non-theorem SYJ206 with ¬¬p1 instead of p1

3.6 The Intuitionistic Logic Theorem Proving Library

The Intuitionistic Logic Theorem Proving (ILTP) Library provides a collection of intu-
itionistic problems commonly used to benchmark automated theorem provers [8]. The SYJ
section of this library includes propositional intuitionistic problems, including both theo-
rems and non-theorems. Some of these problems represent common ideas – for example,
SYJ202 represents the pigeon hole principle with N holes and N + 1 pigeons. Other SYJ
problems do not have simple interpretations. The three methods were tested on the ILTP
(version 1.1.2) problems listed in Table 1.

4 Results

4.1 Data

A call to a prove method was considered successful if it terminated within 5 seconds, by
either finding a valid proof or returning a verdict that no proof exists. Note that these
prover methods conduct exhaustive searches, meaning that if a proof with a height less
than max_depth exists, it will be found eventually – although it may take a long time to
terminate. This observation eliminates the possibility of false negative verdicts.

Among all test cases, the dfs_LJT method had a higher success rate than the other two
methods. Fig. 3 shows that neither random_dfs nor dfs_memoization terminated for any
cases with N ≥ 11. For test cases with N ≤ 10, dfs_memoization had more success than
random_dfs.

7

The test sets varied in difficulty, so it necessary to examine individual test sets when
comparing the provers’ run speed. Fig. 4 shows the run time (averaged over 4 trials) of
each method on the SYJ211 test cases. Points on this scatter plot were removed if the
method took longer than 5 seconds to run, which is why the data is cut off at different N
values. dfs_LJT was far more efficient than the other two methods, making it to N = 15
with under 5 second run times.

Figure 3: Success rates of each method over all chosen ILTP test cases with N ≤ 20

Figure 4: Average run time of each method on SYJ211 test cases

8

Table 2: Proportion of tautologies that are intuitionistically valid

4.2 Additional Experiments

Although it is not related to measuring the effectiveness of the automated prover meth-
ods, I was interested in investigating the fraction of propositional tautologies in classical
logic that can be proven intuitionistically. To measure this proportion, I created a ran-
dom propositional formula generator rand_sentence(n, k) which selects a propositional
sentence at random from the set of all propositional sentences of length n with at most k
distinct variables. This method involved generating a random binary tree with 2n− 1 leaf
nodes using the algorithm described in Fusy [4], then filling each leaf node with a random
variable from {P1, P2, . . . , Pk,¬P1,¬P2, . . . ,¬Pk}. Each non-leaf node was assigned a ran-
dom propositional connective from {∧,∨,→}, then passed through a ¬ operator with a 1

2
chance.

Random propositional sentences were generated until 200 tautologies had been collected
for each pair of (n, k) values less than or equal to 9. These tautologies were passed into
the dfs_LJT method. Table 2 shows the proportion of tautologies were intuitionistically
valid for each (n, k) pair. It is interesting to note that tautologies are more likely to be
intuitionistically valid when they are longer and have many repeated variables.

5 Discussion

The results of the experiment indicate that the dfs_LJT method is superior to the other
prover methods which use the traditional LJ sequent calculus. This finding is to be expected
since the LJT sequent calculus was designed to be contraction-free, making it more suitable
to automated theorem proving. The data also confirms the hypothesis that memoization
provides a big improvement to the efficiency of a basic DFS prover, which makes sense
because it prevents the prover from getting stuck in infinite loops.

It is interesting to note that, although SYJ209 and SYJ211 are listed as non-theorems in
the ILTP library, my programs succeeded in finding proofs for these tests. I confirmed by
hand that the proofs were valid. It is possible that SYJ209 and SYJ211 were mislabelled
in the official library, but it is more likely that I made a mistake – either by incorrectly
transcribing the tests or missing a flaw in the proofs. After the data was collected, I found

9

mistakes in the transcription of tests SYJ206 and SYJ207. These errors did not have a large
effect on the results.

Previous research has already established many powerful automated theorem proving
techniques in intuitionistic logic, most of which are far more efficient than the the algo-
rithms discussed in this paper. These papers include industry standards such as the Coq
tauto tactic [2], as well as provers employing deep reinforcement learning [5] and focused
polarization [6]. Considering the abundance of previous literature, the techniques presented
in this paper do not offer cutting-edge advancements to intuitionistic provers. However, the
simplicity of these algorithms offer insight into the structure of automated provers, allowing
those without extensive backgrounds in logic to appreciate and explore automated theorem
proving and intuitionistic logic itself.

I developed the memoization technique with inspiration from problems in graph theory
and dynamic programming. The effectiveness of the basic optimizations presented here
demonstrate that perhaps future breakthroughs in automated reasoning will come from
simple ideas drawn from other areas of computer science. Advancements in automated
theorem proving would improve proof assistants and proof verification programs often used
by mathematicians. Faster proving methods would also benefit industrial settings, where
automated theorem provers are used to verify integrated circuit designs and catch potential
logic errors in CPUs.

Exploring intuitionistic logic, as well as other non-classical logical frameworks, gives lo-
gicians a better understanding of the structure of argumentation itself. Intuitionism may
reveal new, potentially useful models of understanding truth, in the same way that Euclid’s
neutral geometry helped mathematicians discover elliptical and hyperbolic geometries. From
a philosophical standpoint, it is important to examine the foundations of mathematics, even
something as fundamental as the law of the excluded middle. Ideas and insights gained from
intuitionistic theorem proving may also inspire similar discoveries in classical logic.

In the future, I would like to extend these prover methods to first-order intuitionistic
logic by adding deduction rules for quantifiers. It would also be worthwhile to explore proof
systems other than sequent calculus, such as resolution or natural deduction.

6 Code

The Python code for this project can be found on GitHub at https://github.com/
GabrielDWu/intuitionistic-theorem-proving

Acknowledgements

I would like to thank Professor William Gasarch at the University of Maryland for his
insight and advice during the research process. His guidance helped me convert my initial
ideas into concrete research goals. I am also grateful to Ms. Angelique Bosse for her
coordination of the Blair Senior Research Project program.

10

References

[1] D. Bridges and E. Palmgren, “Constructive Mathematics”, in The Stanford Encyclope-
dia of Philosophy, E. N. Zalta, Ed., Summer 2018, Metaphysics Research Lab, Stan-
ford University, 2018. [Online]. Available: https://plato.stanford.edu/archives/
sum2018/entries/mathematics-constructive/.

[2] Coq reference manual, version 8.12.0. [Online]. Available: https://coq.inria.fr/
refman/.

[3] R. Dyckhoff, “Contraction-free sequent calculi for intuitionistic logic”, The Journal of
Symbolic Logic, vol. 57, no. 3, pp. 795–807, 1992.

[4] E. Fusy, Random generation, 2011. [Online]. Available: http://www.lix.polytechnique.
fr/Labo/Eric.Fusy/Teaching/notes.pdf.

[5] M. Kusumoto, K. Yahata, and M. Sakai, “Automated theorem proving in intuitionistic
propositional logic by deep reinforcement learning”, CoRR, 2018. arXiv: 1811.00796.
[Online]. Available: http://arxiv.org/abs/1811.00796.

[6] S. McLaughlin and F. Pfenning, “Imogen: Focusing the polarized inverse method for
intuitionistic propositional logic”, in Lecture Notes in Computer Science, I. Cervesato,
H. Veith, and A. Voronkov, Eds., 2008, pp. 174–181.

[7] J. Moschovakis, “Intuitionistic Logic”, in The Stanford Encyclopedia of Philosophy, E. N.
Zalta, Ed., Winter 2018, Metaphysics Research Lab, Stanford University, 2018. [Online].
Available: https : / / plato . stanford . edu / archives / win2018 / entries / logic -
intuitionistic/.

[8] T. Raths, J. Otten, and C. Kreitz, “The ILTP Problem Library for Intuitionistic Logic”,
Journal of Automated Reasoning, 2006.

[9] R. Statman, “Intuitionistic propositional logic is polynomial-space complete”, Theoret-
ical Computer Science, vol. 9, no. 1, pp. 67–72, 1979.

11

